# verification-helper: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A require "../../src/nglib/graph/dijkstra" require "../../src/nglib/constants" struct W < NgLib::Weight getter weight : Int64 def initialize(@weight) end def self.zero W.new(0_i64) end def self.inf W.new(OO) end def +(other : self) W.new(Math.min(@weight + other.weight, OO)) end def <=>(other : self) weight <=> other.weight end end n, m, r = read_line.split.map &.to_i64 graph = NgLib::DijkstraGraph(W).new(n) m.times do a, b, c = read_line.split.map &.to_i64 graph.add_edge(a, b, W.new(c), directed: true) end dist = graph.shortest_path(start: r) n.times do |i| puts dist[i] >= W.inf ? "INF" : dist[i].weight end
# verification-helper: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A # require "../../src/nglib/graph/dijkstra" require "atcoder/priority_queue" module NgLib abstract struct Weight include Comparable(Weight) def self.zero : self end def self.inf : self end def +(other : self) end def <=>(other : self) end end # $n$ 頂点 $m$ 辺の重み付きグラフに対して、最短経路を求めます。 # # 経路の復元も可能です。 # # 辺の重みが非負整数で表せる場合は `nglib/graph/radix_dijkstra` を使ったほうが高速です。 class DijkstraGraph(Weight) record Edge(W), target : Int32, weight : W getter size : Int32 @graph : Array(Array(Edge(Weight))) # $n$ 頂点 $0$ 辺からなるグラフを作成します。 # # ``` # graph = Dijkstra.new(n) # ``` def initialize(n : Int) @size = n.to_i32 @graph = Array.new(@size) { Array(Edge(Weight)).new } end # 非負整数の重み $w$ の辺 $(u, v)$ を追加します。 # # `directed` が `true` の場合、 # 有向辺とみなして、$u$ から $v$ への辺のみ生やします。 # # ``` # graph = Dijkstra.new(n) # graph.add_edge(u, v, w) # => (u) <---w---> (v) # graph.add_edge(u, v, w, directed: true) # => (u) ----w---> (v) # ``` def add_edge(u : Int, v : Int, w : Weight, directed : Bool = true) @graph[u.to_i32] << Edge.new(v.to_i32, w) @graph[v.to_i32] << Edge.new(u.to_i32, w) unless directed end # 全点対間の最短経路長を返します。 # # ``` # dists = graph.shortest_path # dists # => [[0, 1, 3], [1, 0, 2], [1, 1, 0]] # ``` def shortest_path : Array(Array(Weight)) (0...@size).map { |start| shortest_path(start) } end # 始点 `start` から各頂点への最短経路長を返します。 # # ``` # dist = graph.shortest_path(2) # dist # => [3, 8, 0, 7, 1] # ``` def shortest_path(start : Int) : Array(Weight) dist = [Weight.inf] * @size dist[start] = Weight.zero next_node = AtCoder::PriorityQueue({Weight, Int32}).min next_node << {Weight.zero, start.to_i32} until next_node.empty? d, source = next_node.pop.not_nil! next if dist[source] < d @graph[source].each do |e| next_cost = dist[source] + e.weight if next_cost < dist[e.target] dist[e.target] = next_cost next_node << {next_cost, e.target} end end end dist end # 始点 `start` から終点 `dest` への最短経路長を返します。 # # ``` # dist = graph.shortest_path(start: 2, dest: 0) # dist # => 12 # ``` def shortest_path(start : Int, dest : Int) : Weight shortest_path(start)[dest] end # 始点 `start` から終点 `dest` への最短経路の一例を返します。 # # ``` # route = graph.shortest_path_route(start: 2, dest: 0) # route # => [2, 7, 1, 0] # ``` def shortest_path_route(start, dest) prev = impl_memo_route(start) res = Array(Int32).new now : Int32? = dest.to_i32 until now.nil? res << now.not_nil! now = prev[now] end res.reverse end # 始点 `start` から最短路木を構築します。 # # 最短路木は `start` からの最短経路のみを残した全域木です。 # # ``` # route = graph.shortest_path_route(start: 2, dest: 0) # route # => [2, 7, 1, 0] # ``` def shortest_path_tree(start, directed : Bool = true) : Array(Array(Int32)) dist = [Weight.inf] * @size dist[start] = Weight.zero next_node = AtCoder::PriorityQueue({Weight, Int32}).min next_node << {Weight.zero, start.to_i32} birth = [-1] * @size until next_node.empty? d, source = next_node.pop.not_nil! next if dist[source] < d @graph[source].each do |e| next_cost = dist[source] + e.weight if next_cost < dist[e.target] dist[e.target] = next_cost next_node << {next_cost, e.target} birth[e.target] = source end end end tree = Array.new(@size) { [] of Int32 } @size.times do |target| source = birth[target] next if source == -1 tree[source] << target tree[target] << source unless directed end tree end # 経路復元のための「どこから移動してきたか」を # メモした配列を返します。 private def impl_memo_route(start) dist = [Weight.inf] * @size dist[start] = Weight.zero prev = Array(Int32?).new(@size) { nil } next_node = AtCoder::PriorityQueue({Weight, Int32}).min next_node << {Weight.zero, start.to_i32} until next_node.empty? d, source = next_node.pop.not_nil! next if dist[source] < d @graph[source].each do |e| next_cost = dist[source] + e.weight if next_cost < dist[e.target] dist[e.target] = next_cost prev[e.target] = source next_node << {next_cost, e.target} end end end prev end end end # require "../../src/nglib/constants" OO = (1_i64 << 62) - (1_i64 << 31) struct W < NgLib::Weight getter weight : Int64 def initialize(@weight) end def self.zero W.new(0_i64) end def self.inf W.new(OO) end def +(other : self) W.new(Math.min(@weight + other.weight, OO)) end def <=>(other : self) weight <=> other.weight end end n, m, r = read_line.split.map &.to_i64 graph = NgLib::DijkstraGraph(W).new(n) m.times do a, b, c = read_line.split.map &.to_i64 graph.add_edge(a, b, W.new(c), directed: true) end dist = graph.shortest_path(start: r) n.times do |i| puts dist[i] >= W.inf ? "INF" : dist[i].weight end